Sepsis-induced acute lung injury (ALI) is an inflammatory process that involves inflammatory cytokine production and cell apoptosis. In the present study, the regulatory role of microRNA (miR)-139-5p in sepsis-induced ALI was investigated using a murine model of cecal ligation puncture (CLP) and an in vitro model using lipopolysaccharide (LPS)-induced normal human bronchial epithelial cells (NHBEs). Sepsis-induced pathological changes in the lungs of ALI mice were detected using hematoxylin and eosin staining. Lung water content was determined, and the expression of proinflammatory cytokines in the bronchoalveolar lavage fluid and serum of sepsis-induced ALI mice were quantified using ELISA. The levels of oxidative stress in lung tissues were determined using commercial kits. The degree of apoptosis was determined using a TUNEL assay. The expression levels of miR-139-5p and Rho-kinase 1 (ROCK1) were determined using reverse transcription-quantitative PCR and western blot analyses. A dual-luciferase reporter assay was used to confirm the direct targeting of ROCK1 by miR-139-5p. NHBEs were co-transfected with vectors expressing ROCK1 (or empty vector) and miR-139-5p mimics or control mimics prior to LPS treatment. The transcriptional activity of caspase-3, the ratio of apoptotic cells, the expression levels of mucin 5AC, mucin 1, TNF-α, IL-1β, IL-6, NLR family pyrin domain containing 3, apoptosis-associated speck-like protein containing a CARD and caspase-1 were evaluated. Compared with the normal group, mice that underwent CLP exhibited abnormal lung morphology, enhanced production of TNF-α, IL-1β and IL-6, increased reactive oxygen species (ROS), malondialdehyde and lactate dehydrogenase levels, an increased proportion of apoptotic cells and increased ROCK1 expression. Superoxide dismutase, glutathione peroxidase and miR-139-5p levels were decreased following CLP. In the NHBEs, stimulation with LPS caused a marked increase in inflammatory cytokine levels and apoptosis compared with the untreated cells. Overexpression of miR-139-5p attenuated cell apoptosis and inflammation. Overexpression of ROCK1 in NHBEs restored the ROS levels and proinflammatory cytokine production inhibited by miR-139-5p. In conclusion, miR-139-5p alleviated sepsis-induced ALI via suppression of its downstream target, ROCK1, suggesting that miR-139-5p may hold promise in the treatment of sepsis-induced ALI.