Cervical cancer is the fourth leading cause of cancer-related death among women worldwide. The chemotherapeutical agent cisplatin, a small platinum-based compound, is considered as the standard therapy for locally advanced cervical cancer or recurrent cancers, sometimes in combination with radiotherapy or other drugs. However, drug resistance and radio-resistance phenomena could reduce the life expectancy of cervical cancer patients. Resistance mechanisms are complex and often involve multiple cellular pathways in which microRNAs (miRNAs) play a fundamental role. MiRNAs are a class of endogenous non-coding small RNAs responsible for post-transcriptional gene regulation. Convincing evidence demonstrates that several deregulated miRNAs are important regulators in the onset of drug and radioresistance in cervical cancer, thus underlying their potential applications in a clinical setting. In this review, we summarized the mechanisms by which miRNAs affect both cisplatin and radioresistance in cervical cancer. We also described the regulatory loops between miRNAs and lncRNAs promoting drug resistance. Besides, we reported evidence for the role of miRNAs in sensitizing cancer cells to cisplatin-based chemotherapy, and provided some suggestions for the development of new combined therapies for cervical cancer.