This study evaluated the effects of microcurrent application and 670 nm InGaP laser irradiation on wound healing in healthy and alloxan diabetic rats. The animals were divided into eight groups: healthy control (HC); diabetic control (DC); healthy treated with microcurrent (HMC); diabetic treated with microcurrent (DMC); healthy irradiated with laser (HL); diabetic irradiated with laser (DL); healthy receiving laser and microcurrent application (HLMC) and diabetic receiving laser and microcurrent application (DLMC). Wound samples were collected on days 2, 6, 10 and 14 of treatment for structural analysis, morphometry, and Western blotting to quantify the expression of TGF-β1 and VEGF. Comparison of animals receiving laser and microcurrent therapy showed a reduction in the number of inflammatory cells in diabetic animals, as well as an increase of fibroblasts in healthy animals and of newly formed vessels in healthy and diabetic animals. Expression of TGF-β1 was increased on day 6 in all groups, especially diabetic animals. A reduction in the expression of this protein was observed on day 10 in all groups. VEGF expression was higher on day 6 in treated and control diabetic animals when compared to healthy animals. Analysis of VEGF expression in the laser-and microcurrent-treated groups on day 10 showed a decrease in diabetic animals and an increase in healthy animals. In conclusion, laser therapy and microcurrent stimulation exert beneficial effects on wound healing in both healthy and diabetic animals.