Experimentally observed blue shifts of the peak position of the luminescence from quantum-well-wire and -dot structures are often significantly larger than the calculated shifts induced by lateral confinement in the structures. In this work we have used high-quality InGaAsAnP multi-quantum-wells for the fabrication of wires. The quantum wells are in the range 3 to 17 monolayers (ML) nominally. The thinnest well, 3 ML, shows a clearly resolved split into two luminescence peaks from areas with a thickness difference of 1 ML. In the case of the wires, the luminescence from the thicker wells show a blue shift, as well a significant broadening. However, the thinnest well shows no blue shift, but a different ratio of the two peaks, with the high energy peak favoured in the wire case. We interpret these effects in terms of a reduced transfer of excitons from thinner to thicker areas of the well in the wire as compared to the unpattemed areas. This due to a reduction of the transfer from 2 dimensional to 1 dimensional in the wires. The peaks originating in areas of different ML thicknesses are not spectrally resolved in the thicker wells and the reduced transfer therefore results in a blue shift as well as a broadening of the luminescence peak.