Slope stability is a critical safety and production issue for mining. Major wall failure can occur seemingly without any visual warning, causing loss of lives, damage to equipment, and disruption to the mining process. Monitoring systems, ranging from simple piezometers and extensometers to highly sophisticated radars and global navigation satellite systems, are employed to predict impending instabilities and failure. Here, we provide a review of the available monitoring systems used in slope management and highlight their major advantages and shortcomings. We propose a simple method for evaluating the effectiveness and reliability of monitoring systems to warn of pending slope failures. The method is based on constructing monitoring reliability maps for the slope by evaluating two slope parameters: Expected deformation to failure and critical reading frequency, which depend on the slope characteristics (e.g., geology and design), service condition (e.g., rainfall, blast), and the economic impact of the failure. The reliability of a deformation monitoring system can be subsequently assessed by identifying three parameters of the system: Coverage area (large or discrete), Deformation monitoring precision, and Measurement frequency. The application of the method to most commonly used deformation monitoring systems is demonstrated. The advantages and implications of the proposed method are highlighted.