As the content on the Internet continues to grow, many new dynamically changing and heterogeneous sources of data constantly emerge. A conventional search engine cannot crawl and index at the same pace as the expansion of the Internet. Moreover, a large portion of the data on the Internet is not accessible to traditional search engines. Distributed Information Retrieval (DIR) is a viable solution to this as it integrates multiple shards (resources) and provides a unified access to them. Resource selection is a key component of DIR systems. There is a rich body of literature on resource selection approaches for DIR. A key limitation of the existing approaches is that they primarily use term-based statistical features and do not generally model resource-query and resource-resource relationships. In this paper, we propose a graph neural network (GNN) based approach to learning-to-rank that is capable of modeling resource-query and resource-resource relationships. Specifically, we utilize a pre-trained language model (PTLM) to obtain semantic information from queries and resources. Then, we explicitly build a heterogeneous graph to preserve structural information of query-resource relationships and employ GNN to extract structural information. In addition, the heterogeneous graph is enriched with resource-resource type of edges to further enhance the ranking accuracy. Extensive experiments on benchmark datasets show that our proposed approach is highly effective in resource selection. Our method outperforms the state-of-the-art by 6.4% to 42% on various performance metrics.
CCS CONCEPTS• Information systems → Learning to rank; Combination, fusion and federated search.