BackgroundPercutaneous endoscopic transforaminal lumbar interbody fusion (PE-TLIF) has been widely discussed due to its advantages of less trauma, less bleeding, quick recovery, high safety, and relatively fewer complications, as well as other adverse factors such as incomplete decompression, steep learning curve, low fusion rate, and high radiation risk. It can keep the posterior structure of spine intact to the greatest extent, ensure the stability of spine after surgery, and achieve decompression with minor trauma. However, posterior percutaneous pedicle screws are often needed for fusion and fixation after decompression, and additional posterior trauma, postural changes and anesthesia methods are often required. Interbody fixation and fusion are often independent and not one-stop completion. The authors consider whether the percutaneous spinal endoscopy can be used to achieve complete decompression and fusion under a single minimally invasive channel, while achieving one-stop endoscopic decompression, fusion and fixation. The purpose of this paper is to provide the anatomic feasibility for oblique fixation by measuring the imaging anatomic parameters, especially to provide the anatomic basis for the design of new endoscopic lumbar interbody fusion cage.Methods Sixty volunteers (22 men and 38 women) who underwent lumbar CT scans were collected and sent to the GEAW4.4 workstation. The distances from posterior corner in the lumbar spine to the corresponding targets of the contralateral anterior corner and the included angles between each path line in sagittal and axial plane were measured and analyzed statistically.Results In the medium group, PC path was the shortest, PA path and PB path had little difference (P=0.123), with no statistical significance. In the full-length group, PF path was the shortest, and there was no significant difference between PD path and PE path (P =0.177). PE was the optimal path. The included angles a1, a2, a3, b1, b2, and b3 in sagittal plane and c1, c2 and c3 in axial plane were significantly different (P=0.000), namely, a1 >a2>a3, b1>b2>b3, and c1<c2<c3. Conclusions This study provides anatomic feasibility for percutaneous endoscopic transforaminal oblique fixation from posterior corner in lumbar spine and particularly provides anatomic basis for the design of new endoscopic lumbar interbody fusion cage.