2017
DOI: 10.1007/s11042-017-4480-9
|View full text |Cite
|
Sign up to set email alerts
|

Lung nodules diagnosis based on evolutionary convolutional neural network

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
33
0
5

Year Published

2017
2017
2024
2024

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 73 publications
(38 citation statements)
references
References 25 publications
0
33
0
5
Order By: Relevance
“…In recent years, motivated by the creditable performance of neural network in the fields of computer vision, applying the deep learning technique in medical image has become a main trend that shows promising results. Consequently, various CAD systems based on neural network have been proposed to implement the classification of lung nodules [7][8][9][10][11][12][13][14][15]. Compared to traditional CAD systems, neural network based systems can automatically extract high-level features from the original images by using different network structures.…”
Section: Introductionmentioning
confidence: 99%
“…In recent years, motivated by the creditable performance of neural network in the fields of computer vision, applying the deep learning technique in medical image has become a main trend that shows promising results. Consequently, various CAD systems based on neural network have been proposed to implement the classification of lung nodules [7][8][9][10][11][12][13][14][15]. Compared to traditional CAD systems, neural network based systems can automatically extract high-level features from the original images by using different network structures.…”
Section: Introductionmentioning
confidence: 99%
“…Whereas in [13], lung nodules are classified through the development of Multi-view convolutional neural networks (MV-CNN).The authors achieved higher classification result to differentiate benign and malignant lung nodules. In [14], the authors used a different approach by combing the genetic algorithm with deep learning to classify lung nodules without computing the shape of nodules. The presented methodology was tested on LIDC-IDRI dataset and showed the best sensitivity of 94.66%, specificity of 95.14%, an accuracy of 94.78% and area under the AUC of 0.949.…”
Section: Introductionmentioning
confidence: 99%
“…O Capítulo 2 apresenta todas estas terminologias com mais detalhes e as descrições de alguns desses métodos. Vários esquemas CAD basearam-se em aprendizado profundo para a classificação benigno vs. maligno de nódulos pulmonares (SHEN et al, 2019;HUSSEIN et al, 2019;NÓBREGA et al, 2018;ZHAO et al, 2018;PAUL et al, 2018;SUN;ZHENG;QIAN, 2017;TAJBAKHSH;SUZUKI, 2017;SILVA et al, 2017;NIBALI;HE;WOLLERSHEIM, 2017;SHEN et al, 2017;SONG et al, 2017a;HUSSEIN et al, 2017).…”
Section: Estado Da Arteunclassified
“…As imagens utilizadas nesta etapa do trabalho foram de TC de tórax no padrão DICOM provenientes do repositório público LIDC (do Inglês Lung Image Database Consortium, Image Database Resource Initiative), pertencente ao The Cancer Imaging Archive do National Cancer Institute, National Institutes of Health dos Estados Unidos (ARMATO III et al, 2011). O LIDC é uma base de dados referência para a comunidade de pesquisa em engenharia e informática de imagens médicas, tendo sido utilizada em diversos trabalhos (KAYA, 2018;DHARA et al, 2017a;CAO et al, 2017;SILVA et al, 2017;NIBALI;HE;WOLLERSHEIM, 2017;LUCENA et al, 2016). Atualmente, ela é composta por 1.018 exames de TC com 244.527 imagens de 1.010 pacientes (ARMATO III et al, 2018).…”
Section: Conjunto E Segmentação De Imagensunclassified
See 1 more Smart Citation