This paper is concerned with adaptive control for anti-synchronization of a class of uncertain fractional-order chaotic complex systems described by a unified mathematical expression. By utilizing the recently established result for the Caputo fractional derivative of a quadratic function and employing the adaptive control technique, we design controllers and some fractional-order parameter update laws to anti-synchronize two fractional-order chaotic complex systems with unknown parameters. The proposed method has generality, simplicity, and feasibility. Moreover, anti-synchronization between uncertain fractional-order complex Lorenz system and fractional-order complex Lü system is implemented as an example to demonstrate the effectiveness and feasibility of the proposed scheme.