Purpose
Environmental sustainability is quickly becoming one of the most critical issues in industry development. This study aims to conduct a systematic literature review through which the author can provide various research areas to work on for future researchers and provide insight into Industry 4.0 and environmental sustainability.
Design/methodology/approach
This study accomplishes this by performing a backward analysis using text mining on the Scopus database. Latent semantic analysis (LSA) was used to analyze the corpus of 4,364 articles published between 2013 and 2023. The authors generated ten clusters using keywords in the industrial revolution and environmental sustainability domain, highlighting ten research avenues for further exploration.
Findings
In this study, three research questions discuss the role of environmental sustainability with Industry 4.0. The author predicted ten clusters treated as recent trends on which more insight is required from future researchers. The authors provided year-wise analysis, top authors, top countries, top sources and network analysis related to the topic. Finally, the study provided industrialization’s effect on environmental sustainability and the future aspect of automation.
Research limitations/implications
The reliability of the current study may be compromised, notwithstanding the size of the sample used. Poor retrieval of the literature corpus can be attributed to the limitations imposed by the search words, synonyms, string construction and variety of search engines used, as well as to the accurate exclusion of results for which the search string is insufficient.
Originality/value
This research is the first-ever study in which a natural language processing technique is implemented to predict future research areas based on the keywords–document relationship.