SummaryInternet of Things (IoT) has very remarkable advantages over customary communication technologies. However, IoT suffers from different issues, such as limited battery life, low storage capacity, and little computing capacity. For this reason, in many IoT applications and devices, we require an alternative unit to execute the tasks from the user's device and return results. In general, the problem of limited resources by transferring the computation workload to other devices/systems with better resources is addressed by offloading computation. It can be focused on improving the application, extending battery life, or expanding storage capacity. The offloading operation can be performed based on various quality of service (QoS) parameters that contain computational demands for load balancing, response time, application, energy consumption, latency, and other things. Moreover, the systematic literature review (SLR) method is used to identify, assess, and integrate findings from all relevant studies that address one or more research questions on IoT offloading and conduct a comprehensive study of empirical research on offloading techniques. However, we present a new taxonomy for them based on offloading decision mechanisms and overall architectures. Furthermore, we offer a parametric comparison for the offloading methods. As well, we present the future direction and research opportunities in IoT offloading computation. This survey will assist academics and practitioners to directly understand the progress in IoT offloading.
Since December 2019, the COVID-19 outbreak has resulted in countless deaths and has harmed all facets of human existence. COVID-19 has been designated an epidemic by the World Health Organization (WHO), which has placed a tremendous burden on nearly all countries, especially those with weak health systems. However, Deep Learning (DL) has been applied in several applications and many types of detection applications in the medical field, including thyroid diagnosis, lung nodule recognition, fetal localization, and detection of diabetic retinopathy. Furthermore, various clinical imaging sources, like Magnetic Resonance Imaging (MRI), X-ray, and Computed Tomography (CT), make DL a perfect technique to tackle the epidemic of COVID-19. Inspired by this fact, a considerable amount of research has been done. A Systematic Literature Review (SLR) has been used in this study to discover, assess, and integrate findings from relevant studies. DL techniques used in COVID-19 have also been categorized into seven main distinct categories as Long Short Term Memory Networks (LSTM), Self-Organizing Maps (SOMs), Conventional Neural Networks (CNNs), Generative Adversarial Networks (GANs), Recurrent Neural Networks (RNNs), Autoencoders, and hybrid approaches. Then, the state-of-the-art studies connected to DL techniques and applications for health problems with COVID-19 have been highlighted. Moreover, many issues and problems associated with DL implementation for COVID-19 have been addressed, which are anticipated to stimulate more investigations to control the prevalence and disaster control in the future. According to the findings, most papers are assessed using characteristics such as accuracy, delay, robustness, and scalability. Meanwhile, other features are underutilized, such as security and convergence time. Python is also the most commonly used language in papers, accounting for 75% of the time. According to the investigation, 37.83% of applications have identified chest CT/chest X-ray images for patients.
PurposeThe main goal of this paper is to study the cloud service discovery mechanisms. In this paper, the discovery mechanisms are ranked in three major classes: centralized, decentralized, and hybrid. Moreover, in this classification, the peer-to-peer (P2P) and agent-based mechanisms are considered the parts of the decentralized mechanism. This paper investigates the main improvements in these three main categories and outlines new challenges. Moreover, the other goals are analyzing the current challenges in a range of problem areas related to cloud discovery mechanisms and summarizing the discussed service discovery techniques.Design/methodology/approachSystematic literature review (SLR) is utilized to detect, evaluate and combine findings from related investigations. The SLR consists of two key stages in this paper: question formalization and article selection processes. The latter includes three steps: automated search, article selection and analysis of publication. These investigations solved one or more service discovery research issues and performed a general study of an experimental examination on cloud service discovery challenges.FindingsIn this paper, a parametric comparison of the discovery methods is suggested. It also demonstrates future directions and research opportunities for cloud service discovery. This survey will help researchers understand the advances made in cloud service discovery directly. Furthermore, the performed evaluations have shown that some criteria such as security, robustness and reliability attained low attention in the previous studies. The results also showed that the number of cloud service discovery–related articles rose significantly in 2020.Research limitations/implicationsThis research aimed to be comprehensive, but there were some constraints. The limitations that the authors have faced in this article are divided into three parts. Articles in which service discovery was not the primary purpose and their title did not include the related terms to cloud service discovery were also removed. Also, non-English articles and conference papers have not been reviewed. Besides, the local articles have not been considered.Practical implicationsOne of the most critical cloud computing topics is finding appropriate services depending on consumer demand in real-world scenarios. Effective discovery, finding and selection of relevant services are necessary to gain the best efficiency. Practitioners can thus readily understand various perspectives relevant to cloud service discovery mechanisms. This paper's findings will also benefit academicians and provide insights into future study areas in this field. Besides, the drawbacks and benefits of the analyzed mechanisms have been analyzed, which causes the development of more efficient and practical mechanisms for service discovery in cloud environments in the future.Originality/valueThis survey will assist academics and practical professionals directly in their understanding of developments in service discovery mechanisms. It is a unique paper investigating the current and important cloud discovery methods based on a logical categorization to the best of the authors’ knowledge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.