SummaryInternet of Things (IoT) has very remarkable advantages over customary communication technologies. However, IoT suffers from different issues, such as limited battery life, low storage capacity, and little computing capacity. For this reason, in many IoT applications and devices, we require an alternative unit to execute the tasks from the user's device and return results. In general, the problem of limited resources by transferring the computation workload to other devices/systems with better resources is addressed by offloading computation. It can be focused on improving the application, extending battery life, or expanding storage capacity. The offloading operation can be performed based on various quality of service (QoS) parameters that contain computational demands for load balancing, response time, application, energy consumption, latency, and other things. Moreover, the systematic literature review (SLR) method is used to identify, assess, and integrate findings from all relevant studies that address one or more research questions on IoT offloading and conduct a comprehensive study of empirical research on offloading techniques. However, we present a new taxonomy for them based on offloading decision mechanisms and overall architectures. Furthermore, we offer a parametric comparison for the offloading methods. As well, we present the future direction and research opportunities in IoT offloading computation. This survey will assist academics and practitioners to directly understand the progress in IoT offloading.
The number of Internet of Things (IoT)-related innovations has recently increased exponentially, with numerous IoT objects being invented one after the other. Where and how many resources can be transferred to carry out tasks or applications is known as computation offloading. Transferring resource-intensive computational tasks to a different external device in the network, such as a cloud, fog, or edge platform, is the strategy used in the IoT environment. Besides, offloading is one of the key technological enablers of the IoT, as it helps overcome the resource limitations of individual objects. One of the major shortcomings of previous research is the lack of an integrated offloading framework that can operate in an offline/online environment while preserving security. This paper offers a new deep Q-learning approach to address the IoT-edge offloading enabled blockchain problem using the Markov Decision Process (MDP). There is a substantial gap in the secure online/offline offloading systems in terms of security, and no work has been published in this arena thus far. This system can be used online and offline while maintaining privacy and security. The proposed method employs the Post Decision State (PDS) mechanism in online mode. Additionally, we integrate edge/cloud platforms into IoT blockchain-enabled networks to encourage the computational potential of IoT devices. This system can enable safe and secure cloud/edge/IoT offloading by employing blockchain. In this system, the master controller, offloading decision, block size, and processing nodes may be dynamically chosen and changed to reduce device energy consumption and cost. TensorFlow and Cooja’s simulation results demonstrated that the method could dramatically boost system efficiency relative to existing schemes. The findings showed that the method beats four benchmarks in terms of cost by 6.6%, computational overhead by 7.1%, energy use by 7.9%, task failure rate by 6.2%, and latency by 5.5% on average.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.