2024
DOI: 10.1109/jeds.2024.3386113
|View full text |Cite
|
Sign up to set email alerts
|

Machine Learning-Based Compact Model Design for Reconfigurable FETs

Maximilian Reuter,
Johannes Wilm,
Andreas Kramer
et al.

Abstract: In integrated circuit design compact models are the abstraction layer which connects semiconductor physics and circuit simulation. Established compact models like BSIM provide a powerful platform for many kinds of conventional MOSFETs. However, novel device concepts like reconfigurable FETs (RFETs) come with a higher expressiveness. Due to their altered transport physics as compared to classical inversion mode MOSFETs those devices are hard to describe in a closed form expression by classical compact models. T… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 30 publications
0
0
0
Order By: Relevance