2013
DOI: 10.1007/978-94-007-6190-2_19
|View full text |Cite
|
Sign up to set email alerts
|

Machine Learning-Based Missing Value Imputation Method for Clinical Datasets

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
29
0
2

Year Published

2015
2015
2023
2023

Publication Types

Select...
6
4

Relationship

0
10

Authors

Journals

citations
Cited by 54 publications
(31 citation statements)
references
References 24 publications
0
29
0
2
Order By: Relevance
“…It has demonstrated to be a robust method, performing properly in a bunch of scenarios, e.g., the prediction of missing attribute values on real cardiovascular data was improved by the use of FURIA in [48]; FURIA turned out as a competitive alternative for recommender systems in [49]; fuzzy rule-based ensembles were constructed including FURIA in order to derive good performance for high dimensional problems [50,51]; etc.…”
Section: Analyzing Furia Inference Mechanism By Fingramsmentioning
confidence: 99%
“…It has demonstrated to be a robust method, performing properly in a bunch of scenarios, e.g., the prediction of missing attribute values on real cardiovascular data was improved by the use of FURIA in [48]; FURIA turned out as a competitive alternative for recommender systems in [49]; fuzzy rule-based ensembles were constructed including FURIA in order to derive good performance for high dimensional problems [50,51]; etc.…”
Section: Analyzing Furia Inference Mechanism By Fingramsmentioning
confidence: 99%
“…Beberapa metode dalam data mining dapat digunakan untuk menangani data dengan missing value, diantaranya dengan tidak menggunakan/menghapus data dengan missing value dari dataset, dengan mengganti dengan nilai tertentu (imputasi), yaitu dengan menggunakan nilai rata-rata fiturnya, dengan nilai modulus (nilai yang sering muncul), atau dengan menggunakan pendekatan algoritma machine learning untuk memprediksi missing value, seperti k-NN, k-Means, dsb. Pada beberapa penelitian (Rahman 2013, Mehala 2009) disimpulkan bahwa proses imputasi dengan menggunakan algoritma machine learning memperoleh hasil yang lebih baik dibandingkan dengan menggunakan nilai ratarata ataupun modulus. Oleh sebab itu, pada penelitian ini digunakan algoritma k-NN untuk mengganti missing value yang ada pada dataset tsunami seperti tampak pada Gambar 5.…”
Section: Tsunamiunclassified
“…To achieve the best possible performance with a learning algorithm on a particular training set, a feature subset selection method considers the interaction between the algorithm and the training dataset. In [17] authors performed missing value handling on cardiovascular dataset using fuzzy unordered rule induction algorithm.…”
Section: Literature Reviewmentioning
confidence: 99%