BackgroundUpregulation of SMC1A (Structural maintenance of chromosomes 1A) is linked with many types of cancer and its oncogenic function, which has been associated with crucial cellular mechanisms (cell division, cell cycle checkpoints regulation and DNA repair). Recent studies have shown that SMC1A was involved in breast cancer, although the exact mechanisms of SMC1A remain to be determined.MethodsUsing The Cancer Genome Atlas (TCGA) database, we examined SMC1A expression and its relation to other genes, including FOXM1 and STMN1. Short hairpin RNA was used to subsequently examine the biological roles of SMC1A in MDA‐MB‐231 and MDA‐MB‐468 cell lines. Bioinformatics were performed to identify the SMC1A‐related gene FOXM1.ResultsHere, we used the TCGA database to show that SMC1A is overexpressed in breast cancer. Later investigations showed SMC1A's role in breast cancer cell survival, apoptosis and invasion. Using bioinformatics and western blot assays, we confirmed that FOXM1 acted as the downstream of SMC1A, and SMC1A knockdown significantly downregulated the FOXM1 expression via the AKT signal pathway. Interestingly, the inhibition effects induced by SMC1A downregulation could be reversed by FOXM1 overexpression. In the clinic, SMC1A expression is favorably linked with FOXM1 expression in breast cancer tumor tissues.ConclusionsCollectively, our results not only enhance our knowledge of SMC1A's molecular pathways in breast cancer, but also suggest a potential new therapeutic target.