LNG (Liquefied Natural Gas) vaporizing stations are usually built in the cities and towns, and the BOG (Boiled Off Gas) pressurizing system is a very important element. In the pressurizing system, the severe vibration of the low-temperature reciprocating compressor may lead to a failure of the pipeline system and the equipment. Therefore, this paper analyzes the stress and pressure pulsation of the BOG compressor piping system in the LNG vaporizing station. The beam model was used to establish the pipe model. The static, harmonic and modal analysis were carried out based on the plane-wave theory and the pressure-fluctuation theory, and the influence factors of support spacing, the settlement of the fulcrum foundation, pipe pressure and elbow angle were analyzed. The main conclusions are as follows: (1) the unbalanced excited force caused by pressure pulsation greatly affects the stress of the exhaust pipe and compressor outlet pipe, and has less influence on the stress of the suction pipe and compressor inlet pipe; (2) although unbalanced excited force is generated in the elbow, it also has an impact on the straight pipe stress; (3) adding an expansion joint to the pipe of the BOG compressor can effectively reduce the stress of the pipe its the displacement, and can increase the flexibility of the pipe.