2022
DOI: 10.1007/978-3-030-88389-8_6
|View full text |Cite
|
Sign up to set email alerts
|

Machine Learning in Tourism: A Brief Overview

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
7
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
4
4
1

Relationship

2
7

Authors

Journals

citations
Cited by 23 publications
(9 citation statements)
references
References 69 publications
0
7
0
2
Order By: Relevance
“…From an academic perspective, and in this “novel visual landscape”, Volo and Irimiás (2021) call for the use of new methods that can analyze the data, first and foremost, photos (available as Big Data), better. However, especially with the emergence of new analytical methods through which users' posts are analyzed via Natural Language Processing or Image Analytics (Egger, 2022), socio-demographic and psychographic characteristics remain completely absent, making it difficult to classify “Instagrammers” in the population. Future research could intertwine the findings from this study with the promising approaches put forth in Ferwerda and Tkalcic (2018) and Jeremy et al (2021) to derive personality traits from Instagram images.…”
Section: Discussionmentioning
confidence: 99%
“…From an academic perspective, and in this “novel visual landscape”, Volo and Irimiás (2021) call for the use of new methods that can analyze the data, first and foremost, photos (available as Big Data), better. However, especially with the emergence of new analytical methods through which users' posts are analyzed via Natural Language Processing or Image Analytics (Egger, 2022), socio-demographic and psychographic characteristics remain completely absent, making it difficult to classify “Instagrammers” in the population. Future research could intertwine the findings from this study with the promising approaches put forth in Ferwerda and Tkalcic (2018) and Jeremy et al (2021) to derive personality traits from Instagram images.…”
Section: Discussionmentioning
confidence: 99%
“…Strojno učenje od koristi je pri izdvajanju kvalitativnih podataka iz skupova podataka koji su jednostavno preveliki da bi ih ljudi sortirali. Algoritmi strojnog učenja podijeljeni su u dvije glavne kategorije: nadzirano učenje (algoritmi uzimaju ono što je već naučeno i primjenjuju to znanje na novim podacima) i nenadzirano učenje (otkrivanje nepoznatog značenja iz podataka) (Iorio i sur., 2020;Egger, 2022). U kontekstu turizma, strojno učenje može iz online recenzija gostiju izvući razloge za negativne ili pozitivne povratne informacije.…”
Section: Strojno Učenjeunclassified
“…U kontekstu turizma, strojno učenje može iz online recenzija gostiju izvući razloge za negativne ili pozitivne povratne informacije. No prava snaga strojnog učenja leži u predviđanju budućih događanja čak i kada određeni skupovi podataka nedostaju (Egger, 2022), što je krucijalno u stvaranju personaliziranih usluga u hotelijerstvu.…”
Section: Strojno Učenjeunclassified
“…Researchers have applied machine learning techniques in different fields such as logistics [ 3 , 4 ], tourism [ 5 , 6 ], finance [ 7 ], and so on. In addition, machine learning and deep learning techniques can be adopted to provide effective solutions for the current problem of geofencing.…”
Section: Introductionmentioning
confidence: 99%