We report on research on matching names in different scripts across languages. We explore two trainable approaches based on comparing pronunciations. The first, a cross-lingual approach, uses an automatic name-matching program that exploits rules based on phonological comparisons of the two languages carried out by humans. The second, monolingual approach, relies only on automatic comparison of the phonological representations of each pair. Alignments produced by each approach are fed to a machine learning algorithm. Results show that the monolingual approach results in machine-learning based comparison of person-names in English and Chinese at an accuracy of over 97.0 F-measure.