To date, the effort made by existing vocabularies to provide a shared representation of the data protection domain is not fully exploited. Different natural language processing (NLP) techniques have been applied to the text of privacy policies without, however, taking advantage of existing vocabularies to provide those documents with a shared semantic superstructure. In this paper we show how a recently released domain-specific vocabulary, i.e. the Data Privacy Vocabulary (DPV), can be used to discover, in privacy policies, the information that is relevant with respect to the concepts modelled in the vocabulary itself. We also provide a machine-readable representation of this information to bridge the unstructured textual information to the formal taxonomy modelled in it. This is the first approach to the automatic processing of privacy policies that relies on the DPV, fuelling further investigation on the applicability of existing semantic resources to promote the reuse of information and the interoperability between systems in the data protection domain.