2017 International Artificial Intelligence and Data Processing Symposium (IDAP) 2017
DOI: 10.1109/idap.2017.8090292
|View full text |Cite
|
Sign up to set email alerts
|

Machine vision based defect detection approach using image processing

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
16
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
5

Relationship

0
10

Authors

Journals

citations
Cited by 57 publications
(17 citation statements)
references
References 16 publications
0
16
0
1
Order By: Relevance
“…Yapılan literatür çalışmasında görüntü işleme teknolojisi ile kesit belirleme işlemlerinde Canny kenar algılama yoğun olarak tercih edilmiştir [14], [7], [3], [18], [12], [15]. Bunun haricinde kenar belirlemek için Hough transform yönteminden faydalanılan çalışmalar da olmuştur [16], [2], [19], [8]. Bu çalışmada kenar belirleme de Canny algoritması kullanılmıştır.…”
Section: şEkil 3 Literatür çAlışmalarındaki Genel Akış Diyagramıunclassified
“…Yapılan literatür çalışmasında görüntü işleme teknolojisi ile kesit belirleme işlemlerinde Canny kenar algılama yoğun olarak tercih edilmiştir [14], [7], [3], [18], [12], [15]. Bunun haricinde kenar belirlemek için Hough transform yönteminden faydalanılan çalışmalar da olmuştur [16], [2], [19], [8]. Bu çalışmada kenar belirleme de Canny algoritması kullanılmıştır.…”
Section: şEkil 3 Literatür çAlışmalarındaki Genel Akış Diyagramıunclassified
“…Recently, machine vision has been popularly used in the defect detection of industrial products instead of labor. However, most studies are focused on the detection of products’ external surface [ 4 , 5 , 6 , 7 ], while few are reported on the internal defects of injection-molded parts with DR imaging. Early work in internal defect detection with DR images using machine vision was based on traditional image processing for automated supervision and localization of defects, which mainly relies on manually produced feature extractors, such as area feature extraction, edge detection, threshold segmentation [ 8 ].…”
Section: Introductionmentioning
confidence: 99%
“…[ 4 ] proposed a fuzzy logic expert system for roller bearing defect detection, the system combines frequency response and fuzzy reasoning and has achieved good results. Baygin et al [ 5 ] used Otsu thresholding and Hough transform to extract features from the reference image for the problem of printed circuit board with defects and matched the image to be inspected with the reference image to accurately detect the missing holes on the circuit board. Zhang Lei et al [ 6 ] proposed a fabric defect classification algorithm combining Local Binary Pattern (LBP) and Gray Level Co-occurrence Matrix (GLCM).…”
Section: Introductionmentioning
confidence: 99%