Interregional brain communication is mediated by the brain's physical wiring (i.e., structural connectivity). Yet, it remains unclear whether models describing directed, functional interactions between latent neuronal populations—effective connectivity—benefit from incorporating macroscale structural connectivity. Here, we assess a hierarchical empirical Bayes method: structural connectivity-based priors constrain the inversion of group-level resting-state effective connectivity, using subject-level posteriors as input; subsequently, group-level posteriors serve as empirical priors for re-evaluating subject-level effective connectivity. This approach permits knowledge of the brain's structure to inform inference of (multilevel) effective connectivity. In 17 resting-state brain networks, we find that a positive, monotonic relationship between structural connectivity and the prior probability of group-level effective connectivity generalizes across sessions and samples. Providing further validation, we show that inter-network differences in the coupling between structural and effective connectivity recapitulate a well-known unimodal-transmodal hierarchy. Thus, our results provide support for the use of our method over structurally uninformed alternatives.