We assess the most macroscopic matter-wave experiments to date as to the extent to which they probe the quantum-classical boundary by demonstrating interference of heavy molecules and cold atomic ensembles. To this end, we consider a rigorous Bayesian test protocol for a parametrized set of hypothetical modifications of quantum theory, including well-studied spontaneous collapse models, that destroy superpositions and reinstate macrorealism. The range of modification parameters ruled out by the measurement events quantifies the macroscopicity of a quantum experiment, while the shape of the posterior distribution resulting from the Bayesian update reveals how conclusive the data are at testing macrorealism. This protocol may serve as a guide for the design of future matter-wave experiments ever closer to truly macroscopic scales.