“…However, because of the well‐known ill‐posedness and non‐uniqueness nature of the geomagnetic data inversion problem, explanation of anomaly sources, that is, model parameter estimations, necessitate some special strategies and efficient approaches (Ekinci et al., 2019). Over the recent years, instead of derivative‐based local optimizers, derivative‐free nature‐inspired global optimizers and metaheuristics such as Particle Swarm Optimization (PSO) (Essa, Abo‐Ezz, et al., 2022; Essa & Elhussein, 2020; Fernández‐Martínez et al., 2010; Pallero et al., 2015; Roy et al., 2022; Santos, 2010), Very Fast Simulated Annealing (VFSA) (Biswas, 2016; Biswas & Acharya, 2016; Biswas & Rao, 2021), Ant Colony Optimization (Liu et al., 2014, 2015; Srivastava et al., 2014); Gray Wolf Optimizer (Agarwal et al., 2018; Chandra et al., 2017), Genetic‐Price Algorithm (Di Maio et al., 2020), Cuckoo Search Algorithm (Turan‐Karaoğlan & Göktürkler, 2021), Differential Search Algorithm (Alkan & Balkaya, 2018; A. Balkaya & Kaftan, 2021; Özyalın & Sındırgı, 2023), Bat Algorithm (Essa & Diab, 2022; Gobashy et al., 2021), Differential Evolution Algorithm (Ç. Balkaya, 2013; Du et al., 2021; Ekinci, Balkaya, & Göktürkler, 2020; Ekinci et al., 2023; Göktürkler et al., 2016; Hosseinzadeh et al., 2023; Roy et al., 2021a; Sungkono, 2020); Backtracking Search Algorithm (Ekinci, Balkaya, & Göktürkler, 2021), Manta‐Ray Foraging Optimization and Social Spider Optimization (Ben et al., 2022a, 2022b, 2022c), Barnacles Mating Optimization (BMO) (Ai et al., 2022) have gained increasing attention in geophysical inversion applications. Unlike local search algorithms, these stochastic optimizers do not need a well‐designed starting point in the model space to reach the global minimum (Sen & Stoffa, 2013; Tarantola, 2005).…”