Inelastic x-ray scattering (IXS) has developed into one of the most powerful momentum-resolved spectroscopies. Especially in the last decade, it has achieved significant progress utilizing brilliant x-rays from third-generation synchrotron radiation facilities. Simultaneously, theoretical efforts have been made to predict or interpret the experimental spectra. One of the scientific fields studied intensively by IXS is strongly correlated electron systems, where the interplay of charge, spin, and orbital degrees of freedom determines their physical properties. IXS can provide a new insight into the electron dynamics of the systems through the observation of charge, spin, and orbital excitations. Focusing on the momentum-resolved electronic excitations in strongly correlated electron systems, we review IXS studies and the present capabilities of IXS for the study of the dynamics of materials. With nonresonant inelastic x-ray scattering (NIXS), one can directly obtain dynamical charge correlation and we discuss its complementary aspects with inelastic neutron scattering. NIXS also has a unique capability of measuring higher multipole transitions, which are usually forbidden in conventional optical absorption. Resonant inelastic x-ray scattering (RIXS) is now established as a valuable tool for measuring charge, spin, and orbital excitations in a momentum-resolved manner. We describe RIXS works on cuprates in detail and show what kind of electronic excitations have been observed. We also discuss RIXS studies on other transition-metal compounds. Finally, we conclude with an outlook on IXS using next-generation x-ray sources.