Scientiic progress in cellular and molecular biotechnology has led to the development of advanced therapies, such as gene therapy, cell therapy, and tissue engineering. The application of stem cells as therapeutic agents has been investigated for several years in human medicine and, more recently, the same approach has been considered in the veterinary ield as a novel opportunity for the treatment of animal diseases. Mesenchymal stem cell (MSC)-based therapies seem to contribute to the healing process by several mechanisms due to their peculiar biological features. It has been shown that MSCs could efectively diferentiate into the required cell type to replace the damaged tissue. Furthermore, due to their autocrine and paracrine secretory activities, these cells are a powerful source of trophic mediators, growth factors, cytokines, and extracellular matrix components. The clinical application of MSCs needs great amounts of cells designed for in vivo implantation that can be obtained following their in vitro isolation, serial subcultivations, cryopreservation, and thawing. These procedures could determine their feature changes which could interfere with the therapeutic outcome. For these reasons, to preserve MSCs after in vitro manipulation for future applications, standardized quality controls and a reliable long-term cryopreservation method are required.