Cryopreservation by vitrification has been recognized as a promising strategy for long-term banking of living cells. However, the difficulty to generate a fast enough heating rate to minimize devitrification and recrystallization-induced intracellular ice formation during rewarming is one of the major obstacles to successful vitrification. We propose to overcome this hurdle by utilizing magnetic induction heating (MIH) of magnetic nanoparticles to enhance rewarming. In this study, superparamagnetic (SPM) Fe3O4 nanoparticles were synthesized by a chemical coprecipitation method. We successfully applied the MIH of Fe3O4 nanoparticles for rewarming human umbilical cord matrix mesenchymal stem cells (hUCM-MSCs) cryopreserved by vitrification. Our results show that extracellular Fe3O4 nanoparticles with MIH may greatly suppress devitrification and/or recrystallization during rewarming and significantly improve the survival of vitrified cells. We further optimized the concentration of Fe3O4 nanoparticles and the current of an alternating current (AC) magnetic field for generating the MIH to maximize cell viability. Our results indicate that MIH in an AC magnetic field with 0.05% (w/v) Fe3O4 nanoparticles significantly facilitates rewarming and improves the cryopreservation outcome of hUCM-MSCs by vitrification. The application of MIH of SPM nanoparticles to achieve rapid and spatially homogeneous heating is a promising strategy for enhanced cryopreservation of stem cells by vitrification.
MicroRNAs can function as key tumor suppressors or oncogenes and act as biomarkers for cancer diagnosis or prognosis. Although high-throughput assays have revealed many miRNA biomarkers for pancreatic ductal adenocarcinoma (PDAC), only a few have been validated in independent populations or investigated for functional significance in PDAC pathogenesis. In this study, we correlated the expression of 36 potentially prognostic miRNAs within PDAC tissue with clinico-pathological features and survival in 151 Chinese patients. We then analyzed the functional roles and target genes of two miRNAs in PDAC development. We found that high expression of miR-186 and miR-326 predict poor and improved survival, respectively. miR-186 was over-expressed in PDAC patients compared with controls, especially in patients with large tumors (>2 cm), lymph node metastasis, or short-term survival (< 24 months). In contrast, miR-326 was down-regulated in patients compared with controls and displayed relatively increased expression in the patients with long-term survival or without venous invasion. Functional experiments revealed that PDAC cell proliferation and migration was decreased following inhibition and enhanced following over-expression of miR-186. In contrast, it was enhanced following inhibition and decreased after over-expression of miR-326. A luciferase assay indicated that miR-186 can bind directly to the 3′-UTR of NR5A2 to repress gene expression. These findings suggest that miR-186 over-expression contributes to the invasive potential of PDAC, likely via suppression of NR5A2, thereby leading to a poor prognosis; high miR-326 expression prolongs survival likely via the decreasing invasive potential of PDAC cells. These two miRNAs can be used as markers for clinical diagnosis and prognosis, and they represent therapeutic targets for PDAC.
Renal ischemia-reperfusion (I/R) injury is a common but severe scientific problem. Luteolin has great anti-inflammatory and antioxidant effects. In this study, we studied the effect of luteolin on renal I/R injury in rats. Intragastric administration of luteolin or saline was performed in Sprague-Dawley rats before (40 mg/kg for three days) and after (one day) renal I/R modeling. Kidney and blood samples were harvested to detect the severity of renal injury 24 hours after operation. The results showed that luteolin-treated rats exhibited milder histomorphological changes with lower scores of renal histological lesions; lower blood urea nitrogen and creatinine levels; lower renal malondialdehyde (MDA), 8-oxo-deoxyguanosine (8-OHdG), and myeloperoxidase (MPO) levels; and higher superoxide dismutase (SOD) and catalase (CAT) activities in the kidney. Luteolin attenuated the increased levels of serum and renal tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, renal high mobility group box-1 (HMGB1), and nuclear factor kappa β (NF-κB) expression levels in I/R rats. Furthermore, luteolin treatment significantly reduced renal cell apoptosis and endoplasmic reticulum (ER) stress caused by renal I/R injury. In conclusion, luteolin improved renal function in I/R rats by reducing oxidative stress, neutrophil infiltration, inflammation, renal cell apoptosis, and expression of HMGB1 and NF-κB, and ER stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.