The impact of the low-Z impurity concentration on the modes stabilization has been investigated in the EAST tokamak. Series of tearing modes (TMs) with multiple helicities are excited by the concentration of low-Z (carbon) impurity, and the dominant mode structure is featured by m/n = 2/1 magnetic islands that propagate in electron diamagnetic drift direction (m and n are poloidal and toroidal mode numbers respectively). The m/n = 2/1 locked modes (LMs) can be formed by the redistribution of low-Z impurity concentration, which is unlocked spontaneously for the decreasing of impurity concentration, where the width of magnetic islands can reach w ≅ 5 cm (w/a ≅ 0.1, a is minor radius). The increasing of electromagnetic brake torque is the primary reason for the mode locking, and the 'O'-point of m/n = 2/1 magnetic islands is locked by the tungsten protector limiter (toroidal position: -0.4π ≦ φ ≦ -0.3π) with separation of Δφ ≅ 0. The 3D asymmetric structure of m/n = 2/1 magnetic islands is formed for the interaction with the tungsten protector limiter, and the electromagnetic interaction decreases dramatically for the separation of Δφ ≧ 0.2π. The mechanisms for the mode excitation and locking can be illustrated by the "hysteresis effect" between the low-Z impurity concentration and the width of m/n = 2/1 magnetic islands, namely the growth of magnetic islands is modulated by the low-Z impurity concentration, and the rotation velocity is decelerated accordingly. However, the intrinsic mechanism for the unlocking of m/n = 2/1 LMs is complicated by considering the concentration of the low-Z impurity, and the possible unlocking mechanism is discussed. Therefore, understanding of the relationship between the impurities and magnetic islands is more important for optimizing the control techniques (RMP→LMs, ECRH→NTM, impurity seeding→major collapse, et al).