A systematic study on the structural and magnetic properties of Fe100-xCox alloys (10<x<90, Δx=10 in wt. percent) obtained by mechanical alloying is presented. Elemental powders of Fe and Co mixed in an adequate weight ratio were milled at room temperature in a shaker mixer mill using vials and balls of hardened steel as milling media with a ball : powder weight ratio of 12 : 1. The mixtures were milled for 3 h. The results show that, after milling, for almost all the composition (up to x=60), solid solutions based on bcc structures were obtained. For Co-rich alloys (x≥70), different phases were found, revealing the formation of a metastable intermetallic phase (FeCo, wairauite) together with fcc-Co and hcp-Co phases. The specific saturation magnetization increases by increasing Co content, reaching a maximum value of 225 emu/g for hcp-Fe70Co30, and then it shows a diminution up to 154 emu/g for bcc-Fe30Co70. All studied alloys (Fe100-xCox) present low coercivity, in the range from 0 to 65 Oe, which is lower than reported. The coercivity increases with the increment in Co, reaching a maximum of 64.1 Oe for Fe40Co60. After that, the coercivity falls up to 24.5 Oe for Co-rich alloys, which make them a very low coercive material.