Moisture stress and inherent soil fertility caused huge loss in crop production. The use of insitu rainwater harvesting and integrated nutrient management can improve soil health and crop production. The Objective of the study was to evaluate the effects of integrated nutrient management and insitu rainwater harvesting on maize productivity in dry regions of Zimbabwe. Experiment was laid out as a factorial with three main factors which include cattle manure, insitu rainwater harvesting and inorganic manure. Data was collected from harvested net plot to obtain maize grain and stover yields for two growing years. Data was analysed based on analysis of variance using IBM SPSS version 25 and means which were significant different were separated using least significant different. The results show that there was significant different (p<0.001) between all treatments combinations. Results recorded higher maize grain yields from100 kg N/ha + 5 t/ha cattle manure treatments for both seasons. High grain yield of 3.41± 0.042 t/ha was recorded from ZN 100 C 5 treatments during the second year and highest maize grain yield of 3.11 t/ha was recorded in first year. There was significant different (p<0.001) on the effects of combination of cattle manure and inorganic fertiliser alone on maize grain yields. Control treatments recorded lowest maize (1.17 ± 0.031 t/ha) and stover yields of 4.36 ± 0.046 t/ha. Results indicated significant different (p<0.001) on the effects of insitu rainwater harvesting, cattle manure and inorganic manure on maize stover yields. The use of integrated nutrient management and insitu rainwater harvesting has the capacity to increase maize yields and reduce food insecurity in dry regions of most sub-Saharan African countries.