TENCON 2008 - 2008 IEEE Region 10 Conference 2008
DOI: 10.1109/tencon.2008.4766705
|View full text |Cite
|
Sign up to set email alerts
|

Majority filter-based minority prediction (MFMP): An approach for unbalanced datasets

Abstract: For many data mining and machine learning applications predicting minority class samples from skewed unbalanced data sets is a crucial problem. To address this problem, we propose a majority filter-based minority prediction (MFMP) approach for unbalanced datasets. The MFMP adopts an unsupervised learning technique for selecting samples for supervised learning. The approach is based on two steps. In the first-step, minority samples are clustered and majority class samples that are out of minority classification… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0
1

Year Published

2019
2019
2023
2023

Publication Types

Select...
2
1
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 16 publications
0
2
0
1
Order By: Relevance
“…Li et al (2015b) uses meta heuristic optimization algorithms (such as Bat Algorithm (BA) and Particle Swarm Optimization algorithm (PSO)) to optimize the selection for improving the performance of classifiers for imbalanced data. Padmaja et al (2008) proposed a new method for fraud detection, that uses extreme outlier elimination using k-Reverse NN (kRNN) approach.…”
Section: Algorithm Level Methodsmentioning
confidence: 99%
“…Li et al (2015b) uses meta heuristic optimization algorithms (such as Bat Algorithm (BA) and Particle Swarm Optimization algorithm (PSO)) to optimize the selection for improving the performance of classifiers for imbalanced data. Padmaja et al (2008) proposed a new method for fraud detection, that uses extreme outlier elimination using k-Reverse NN (kRNN) approach.…”
Section: Algorithm Level Methodsmentioning
confidence: 99%
“…Thus the choice of retaining a Gaussian clutter modeling is coupled with ad hoc image postprocessing, in order to properly remove false alarms (e.g., spurious points). A majority filter 42 coupled with the application of the morphological operators of dilation and erosion have been applied to the resulting binary images. Then OBIA has been applied to cluster and extract ship objects as described for optical data.…”
Section: Vessel Detection In Sar Remotely Sensed Imagesmentioning
confidence: 99%
“…desarrolla dos sistemas de aprendizaje conjunto para superar la deficiencia de la pérdida de información introducida en el método de submuestreo Chawla, Bowyer, Hall & Kegelmeyer (2002). diseñaron un método (SMOTE) que combina el sobremuestreo de la clase minoritaria y el submuestreo de la clase mayoritaria en la búsqueda de un mejor clasificador Padmaja, Krishna & Bapi (2008). recomiendan el algoritmo de la predicción de las minorías basadas en el filtro de las mayorías (MFMP) basado en dos pasos: en el primero las minorías se agrupan y se identifican mejorando su tasa de predicción; en el segundo paso, la mayoría de las muestras se seleccionan aleatoriamente en grupos individuales Japkowicz (2000).…”
unclassified