In a recent study from our group, mating to intact, but not vasectomised, bulls modified the endometrial transcriptome, suggesting an important role of sperm in the modulation of the uterine environment in this species. However, it is not clear whether these changes are driven by intrinsic sperm factors, or by factors of accessory gland (AG) origin that bind to sperm at ejaculation. Thus, the aim of the present study was to determine whether ejaculated sperm, which are suspended in the secretions of the AGs, elicit a different endometrial transcriptomic response than epididymal sperm, which have never been exposed to AG factors. To this end, bovine endometrial explants collected from heifers in oestrus were incubated alone (control), or with epididymal or ejaculated sperm. RNA-sequencing revealed 1912 differentially expressed genes (DEGs) between in endometrial explants exposed to epididymal sperm compared with control explants, whereas 115 DEGs genes detected between endometrial explants exposed to ejaculated sperm in comparison to control explants. In both cases, the top pathways associated with these genes included T cell regulation and NF-KB and IL17 signalling. To confirm whether AG factors were directly responsible for the dampening of the endometrial response elicited by ejaculated sperm, endometrial explants were incubated with epididymal sperm previously exposed, or not, to seminal plasma (SP). Exposure to SP abrogated the downregulation of SQSTM1 by epididymal sperm, and partially inhibited the upregulation of MYL4 and CHRM3 and downregulation of SCRIB. These data indicate that factors of AG origin modulate the interaction between sperm and the endometrium in cattle.