Behavioral sex pheromone responsiveness in the male moth Agrotis ipsilon was previously shown to be controlled by juvenile hormone (JH). However, this morphogenetic hormone did not change the sensitivity of antennae to sex pheromones. To analyze the possible involvement of JH in the central integration of the female-produced sex pheromone, we investigated the pheromone response of olfactory antennal lobe (AL) interneurons in male A. ipsilon as a function of age and JH status by using intracellular recordings. When the antennae were stimulated with the sex pheromone blend, the sensitivity of olfactory AL neurons increased with age, as does the JH-dependent behavioral and physiological development of A. ipsilon males. Furthermore, males surgically deprived of JH showed a significant decrease in the sensitivity of the AL neurons. JH injection in operated or in young males restored or induced, respectively, a high sensitivity of the AL neurons. JH seems likely to be involved in the plasticity of the adult insect brain by modulating the central nervous processing of olfactory information, thus allowing mate recognition and reproduction at the optimal time.