ORCID IDs: 0000-0002-4656-3189 (H.S.); 0000-0003-0518-5924 (C.Z.); 0000-0001-9320-9628 (W.J.).Anther cuticle and pollen exine are protective barriers for pollen development and fertilization. Despite that several regulators have been identified for anther cuticle and pollen exine development in rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), few genes have been characterized in maize (Zea mays) and the underlying regulatory mechanism remains elusive. Here, we report a novel male-sterile mutant in maize, irregular pollen exine1 (ipe1), which exhibited a glossy outer anther surface, abnormal Ubisch bodies, and defective pollen exine. Using map-based cloning, the IPE1 gene was isolated as a putative glucose-methanolcholine oxidoreductase targeted to the endoplasmic reticulum. Transcripts of IPE1 were preferentially accumulated in the tapetum during the tetrad and early uninucleate microspore stage. A biochemical assay indicated that ipe1 anthers had altered constituents of wax and a significant reduction of cutin monomers and fatty acids. RNA sequencing data revealed that genes implicated in wax and flavonoid metabolism, fatty acid synthesis, and elongation were differentially expressed in ipe1 mutant anthers. In addition, the analysis of transfer DNA insertional lines of the orthologous gene in Arabidopsis suggested that IPE1 and their orthologs have a partially conserved function in male organ development. Our results showed that IPE1 participates in the putative oxidative pathway of C16/C18 v-hydroxy fatty acids and controls anther cuticle and pollen exine development together with MALE STERILITY26 and MALE STERILITY45 in maize.Male sterility is a common biological phenomenon in plants and widely used in the production of hybrid seeds, which can reduce costs and enhance seed purity (Tester and Langridge, 2010). According to inheritance or origin, male sterility includes three types: genic male sterility, cytoplasmic male sterility, and cytoplasmicgenic male sterility (Rhee et al., 2015). The generation of mature pollen grains relies on anther development. The start of anther formation occurs in differentiated flower tissues (floral meristem), which consist of three histogenic layers: L1, L2, and L3. After continuous cell division and differentiation, L1 forms the epidermis and the L3 layer develops into the stomium and vascular bundles. L2 is the most important layer; it undergoes a series of periclinal and anticlinal divisions and eventually grows into the endothecium, the middle layer, the tapetum, and the pollen mother cells. When anther morphogenesis is completed, the anther has centrally localized pollen mother cells enclosed by four somatic layers, which are, from the surface to the interior, the epidermis, endothecium, middle layer, and tapetum. Then, the pollen mother cells undergo meiosis and mitosis, resulting in trinucleate pollen grains, and the endothecium, middle layer, and tapetum are gradually degraded (Goldberg et al., 1993(Goldberg et al., , 1995Ma, 2005).The anther cuticle and poll...