Citing articles: 16 View citing articles Biotechnology and Genetic Engineering Reviews -Vol. 25, 1-40 (2008)
AbstractThere is a renewed interest in obtaining a systemic understanding of metabolism, gene expression and signal transduction processes, driven by the recent research focus on Systems Biology. From a biotechnological point of view, such a systemic understanding of how a biological system is designed to work can facilitate the rational manipulation of specific pathways in different cell types to achieve specific goals. Due to the intrinsic complexity of biological systems, mathematical models are a central tool for understanding and predicting the integrative behavior of those systems. Particularly, models are essential for a rational development of biotechnological applications and in understanding system's design from an evolutionary point of view. Mathematical models can be obtained using many different strategies. In each case, their utility will depend upon the properties of the mathematical representation and on the possibility of obtaining meaningful parameters from available data. In practice, there are several issues at stake when one has to decide which mathematical model is more appropriate for the study of a given problem. First, one needs a model that can represent the aspects of the system one wishes to study. Second, one must choose a mathematical representation that allows an accurate analysis of the system with respect to different aspects of interest (for example, robustness of the system, dynamical behavior, optimization of the system with respect to some production goal, parameter value determination, etc). Third, before choosing between alternative and equally appropriate mathematical representations for the system, one should compare representations with respect to easiness of automation for model set-up, simulation, and analysis of results. Fourth, one should also consider how to facilitate model transference and re-usability by other researchers and for distinct purposes. Finally, one factor that is important for all four aspects is the regularity in the mathematical structure of the equations because it facilitates computational manipulation. This regularity is a mark of kinetic representations based on approximation theory. The use of approximation theory to derive mathematical representations with regular structure for modeling purposes has a long tradition in science. In most applied fields, such as engineering and physics, those approximations are often required to obtain practical solutions to complex problems. In this paper we review some of the more popular mathematical representations that have been derived using approximation theory and are used for modeling in molecular systems biology. We will focus on formalisms that are theoretically supported by the Taylor Theorem. These include the Power-law formalism, the recently proposed (log)linear and Lin-log formalisms as well as some closely related alternatives. We will analyze the similarities and differences between...