The SISE-Eaux database of water intended for human consumption, archived by the French Regional Health Agency (ARS) since 1990, is a rich source of information. However, more or less regular monitoring over almost 30 years and the multiplication of parameters lead to a sparse matrix (observations × parameters) and a large dimension of the hyperspace of data. These characteristics make it difficult to exploit this database for a synthetic mapping of water quality, and to identify of the processes responsible for its diversity in a complex geological context and anthropized environment. A 10-year period (2006–2016) was selected from the Provence-Alpes- Côte d’Azur region database (PACA, southeastern France). We extracted 5,295 water samples, each with 15 parameters. A treatment by principal component analysis (PCA) followed with orthomax rotation allows for identifying and ranking six principal components (PCs) totaling 75% of the initial information. The association of the parameters with the principal components, and the regional distribution of the PCs make it possible to identify water-rock interactions, bacteriological contamination, redox processes and arsenic occurrence as the main sources of variability. However, the results also highlight a decrease of useful information, a constraint linked to the vast size and diversity of the study area. The development of a relevant tool for the protecting and managing of water resources will require identifying of subsets based on functional landscape units or the grouping of groundwater bodies.