Changes in the catches of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758), in Lake Wamala (Uganda) have been observed since its introduction. The factors contributing to these changes, however, are not well understood. This study examined changes in species composition, size structure, size at first maturity, length-weight relationship and condition factor of Nile tilapia in Lake Wamala, in relation to changes in temperature, rainfall and lake depth, to provide a better understanding of the possible role of changing climatic conditions. There was an increase in the minimum, maximum and average temperatures since 1980, but only the minimum (0.021°C year
À1) and average temperatures (0.018°C year À1 ) exhibited a significant trend (P < 0.05). Rainfall increased by 8.25 mm year À1 since 1950 and accounted for 79.5% of the water input into the lake during the period 2011-2013, while evaporation accounted for 86.2% of the water loss from the lake. The lake depth was above 4 m during the years when the rainfall exceeded the average of 1180 mm, except after 2000. The contribution of Nile tilapia to total fish catch and catch per unit effort (CPUE) increased with rainfall and lake depth up to the year 2000, after which they decreased, despite an increased rainfall level. The lake depth was positively correlated with the average total length and length at 50% maturity (r = 0.991 and 0.726, respectively), while the slopes of the length-weight relationships differed significantly between high and low lake depths [t (6) = 3.225, P < 0.05]. Nile tilapia shifted from an algal-dominated diet during the wet season to include more insects during the dry season. The results of this study indicate Nile tilapia in Lake Wamala displays a typical r-selected reproductive strategy, by growing to a small size, maturing faster and feeding on different food types, in order to survive high mortality rates under unfavourable conditions attributable to higher temperatures, low rainfall and low lake water levels.