Fisheries resources support livelihoods of fishing communities but are threatened by over-exploitation, habitat degradation, pollution, invasive species and climate change. Unlike the other threats, climate change has received limited consideration and reducing its risks requires appropriate adaptation strategies. This study used quantitative and qualitative methods to generate knowledge on fishers' perceptions of climate change, changes in climate variables and their impacts on livelihoods, adaptation strategies, constraints to adaptation and required interventions to promote adaptation strategies that would enable fishers to build resilience to sustain their livelihoods. We found that fishers were aware of changes in climate conditions manifested by unpredictable seasons, floods and droughts. Fishing remained the main livelihood activity. However, the dominance of fishes had changed from Nile tilapia (Oreochromis niloticus L.) to the African catfish (Clarias gariepinus Burchell). Floods and droughts were associated with damage to gears, boats, landing sites and changes in fish catches and sizes, income from fishing and fish consumption. The fishers adapted by increasing time on fishing grounds and changing target species and fishing gear among other things. Some innovative fishers diversified to high-value crops and livestock. This increased their income beyond what was solely earned from fishing which provided an incentive for some of them to quit fishing. Livelihood diversification was enhanced by use of communications technology, membership of social groups, increasing fishing days and fishing experience. Adaptation was, however, constrained by limited credit, awareness and access to land, which require interventions such as improving access to credit, irrigation facilities, appropriate planting materials and awareness raising. We identified adaptation strategies, which if promoted and their constraints addressed, could increase resilience of fishers to the influence of climate change and sustain their livelihoods.
Relationships between environmental variables and benthic macroinvertebrate assemblages were investigated among several sites that varied in disturbance history in Bwindi Impenetrable National Park, an Afromontane site in East Africa. Environmental variables were correlated with the level of past catchment disturbance -logging, agricultural encroachment, and present tourism activity. For example, sites in medium and high disturbance categories had higher values of specific conductance and lower water transparency than low disturbance category sites, these environmental variables may therefore act indicators of ecological quality of rivers. Environmental variables such as conductivity and water transparency were found to be good predictors of benthic macroinvertebrate assemblages, with anthropogenically stressed sites having lower diversity than the reference sites. Impacted sites were dominated by tolerant taxa such as chironomid and leeches, while 'clean water' taxa such as Ephemeroptera, Plecoptera and Trichoptera dominated at minimally impacted sites. Comparison of sites with different disturbance histories provided evidence for differences in benthic macroinvertebrate communities that reflect the state of forest restoration and recovery. We recommend quarterly monitoring of water quality to act as an early warning system of deterioration and tracking ecological recovery of previously impacted sites.
African tropical lakes provide vital ecosystem services including food and water to some of the fastest growing human populations, yet they are among the most understudied ecosystems in the world. The consequences of climate change and other stressors on the tropical lakes of Africa have been informed by long-term analyses, but these studies have largely focused on the massive Great Rift Valley lakes. Our objective was to evaluate how recent climate change has altered the functioning and services of smaller tropical lakes, which are far more abundant on the landscape. Based on a paired analysis of 20 years of high-resolution water column data and a paleolimnological record from a small crater lake in western Uganda, we present evidence that even a modest warming of the air (∼0.9°C increase over 20 years) and changes in the timing and intensity of rainfall can have significant consequences on the dynamics of this common tropical lake type. For example, we observed a significant nonlinear increase (R2adj = 0.23, e.d.f. = 7, p<0.0001) in thermal stability over the past 20 years. This resulted in the expansion of anoxic waters and consequent deterioration of fish habitat and appears to have abated primary production; processes that may impair ecosystem services for a vulnerable human population. This study on a system representative of small tropical crater lakes highlights the far-reaching effects of global climatic change on tropical waters. Increased research efforts into tropical aquatic ecosystem health and the development of sound management practices are necessary in order to strengthen adaptive capabilities in tropical regions.
This study identifies environmental predictors of the condition of two introduced tilapia species (Oreochromis leucostictus and Tilapia zillii) that are known to have divergent trophic niches (planktivore and herbivore, respectively) in 17 crater lakes in western Uganda. We asked whether fish condition differs among lakes characterized by differences in fishing pressure and catchment deforestation; and we related relative condition factor to gradients of environmental variation across lakes. Lakes characterized by severe catchment deforestation tended to be lakes with high fishing pressure, so it was difficult to explore independent and interactive effects. However, mean relative condition factor was higher in populations with high fishing pressure compared to populations with low fishing pressure for both O. leucostictus and T. zillii. The condition of O. leucostictus populations was higher in lakes with severely deforested catchments; but mean relative condition factor of T. zillii did not differ between deforestation categories. Principal components analysis (PCA) was used to describe the major environmental gradients of variation among the lakes; and PCA factor scores were regressed against relative fish condition. The association between fish condition and environmental gradients was stronger for O. leucostictus than for T. zillii. For O. leucostictus, fish condition was related to PC1 (43% of the variance) and factors that loaded most heavily included Chl-a, water transparency, lake area and depth, suggesting higher condition in lakes characterized by higher primary productivity and smaller size. For T. zillii, PC3 (11%) was the only axis related to fish condition; and factors that loaded most heavily included lake area (positive), and conductivity and total nitrogen (negative). Some of the larger lakes are characterized by higher availability of macrophytes that may positively affect the food base for T. zillii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.