Menopausal estrogen (E2) replacement therapy increases the risk of estrogen receptor (ER)-positive epithelial ovarian cancers (EOC). Whether E2 is tumorigenic or promotes expansion of undiagnosed pre-existing disease is unknown. To determine E2 effects on tumor promotion, we developed an intraperitoneal mouse xenograft model using ZsGreen fluorescent ER− 2008 and ER+ PEO4 human EOC cells. Tumor growth was quantified by in vivo fluorescent imaging. In ER+ tumors, E2 significantly increased size, induced progesterone receptors, and promoted lymph node metastasis, confirming that ER are functional and foster aggressiveness. Laser captured human EOC cells from ER− and ER+ xenografted tumors were profiled for expression of E2-regulated genes. Three classes of E-regulated EOC genes were defined, but less than 10% were shared with E-regulated breast cancer genes. Since breast cancer selective ER modulators (SERMs) are therapeutically ineffective in EOC, we suggest that our EOC-specific E-regulated genes can assist pharmacologic discovery of ovarian targeted SERM.