Recently, it has been accepted that miR-based therapy may be beneficial for rheumatoid arthritis (RA). This study aimed to evaluate the potential involvement of miR-145 in RA in vitro. The expression of miR-145 in the human fibroblast-like synoviocyte line MH7A was overexpressed by miR-mimic transfection, after which cells were subjected to lipopolysaccharides (LPS). Cell viability, apoptosis, and the release of pro-inflammatory cytokines were measured. The result showed that the apoptosis and the release of IL-1β, IL-6, IL-8, and TNF-α were significantly induced by LPS. Meanwhile, LPS treatment led to downregulation of miR-145. miR-145 overexpression in LPS-untreated MH7A cells had no impacts on cell apoptosis and inflammation. But, restoring miR-145 expression in LPS-stimulated cells by supplementation of a miR-145 mimic protected MH7A cells against LPS-induced apoptosis and inflammation. Furthermore, miR-145 overexpression in LPS-untreated MH7A cells slightly blocked the PI3K/ATK and mTOR pathways, whereas miR-145 overexpression in LPS-stimulated cells notably repressed the LPS-induced activation of PI3K/ATK and MAPK/mTOR pathways. Our study suggested that miR-145 protected MH7A cells against LPS-induced apoptosis and inflammation by inhibiting the PI3K/AKT and MAPK/mTOR pathways.