2021
DOI: 10.48550/arxiv.2110.02189
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Manifold learning-supported estimation of relative transfer functions for spatial filtering

Abstract: Many spatial filtering algorithms used for voice capture in, e.g., teleconferencing applications, can benefit from or even rely on knowledge of Relative Transfer Functions (RTFs). Accordingly, many RTF estimators have been proposed which, however, suffer from performance degradation under acoustically adverse conditions or need prior knowledge on the properties of the interfering sources. While state-of-the-art RTF estimators ignore prior knowledge about the acoustic enclosure, audio signal processing algorith… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 22 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?