Synaptic communication is based on a biological Molecular Communication (MC) system which may serve as a blueprint for the design of synthetic MC systems. However, the physical modeling of synaptic MC is complicated by the possible saturation of the molecular receiver caused by the competition of neurotransmitters (NTs) for postsynaptic receptors. Receiver saturation renders the system behavior nonlinear in the number of released NTs and is commonly neglected in existing analytical models. Furthermore, due to the ligands' competition for receptors (and vice versa), the individual binding events at the molecular receiver are in general not statistically independent and the commonly used binomial model for the statistics of the received signal does not apply. Hence, in this work, we propose a novel deterministic model for receptor saturation in terms of a state-space description based on an eigenfunction expansion of Fick's diffusion equation. The presented solution is numerically stable and computationally efficient. Employing the proposed deterministic model, weshow that saturation at the molecular receiver effectively reduces the peak-value of the expected received signal and accelerates the clearance of NTs as compared to the case when receptor occupancy is neglected.We further derive a statistical model for the received signal in terms of the hypergeometric distribution which accounts for the competition of NTs for receptors and the competition of receptors for NTs. The proposed statistical model reveals how the signal statistics are shaped by the number of released NTs, the number of receptors, and the binding kinetics of the receptors, respectively, in the presence of competition. In particular, we show that the impact of these parameters on the signal variance is qualitatively different depending on the relative numbers of NTs and receptors. Finally, the accuracy of the proposed deterministic and statistical models is verified by particle-based computer simulations.
Many spatial filtering algorithms used for voice capture in, e.g., teleconferencing applications, can benefit from or even rely on knowledge of Relative Transfer Functions (RTFs). Accordingly, many RTF estimators have been proposed which, however, suffer from performance degradation under acoustically adverse conditions or need prior knowledge on the properties of the interfering sources. While state-of-the-art RTF estimators ignore prior knowledge about the acoustic enclosure, audio signal processing algorithms for teleconferencing equipment are often operating in the same or at least a similar acoustic enclosure, e.g., a car or an office, such that training data can be collected. In this contribution, we use such data to train Variational Autoencoders (VAEs) in an unsupervised manner and apply the trained VAEs to enhance imprecise RTF estimates. Furthermore, a hybrid between classic RTF estimation and the trained VAE is investigated. Comprehensive experiments with real-world data confirm the efficacy for the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.