In this article, four kinds of konjac glucomannan based superabsorbent polymers (KSAPs) with different aggregate sizes were obtained by sieving the KSAP powders manually. They were characterized by scanning electronic microscopy (SEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and optical contact angle (OCA), and the effects of aggregate size on liquid absorption characteristics of KSAP were studied in detail. The results show that the coarse KSAP particles were aggregated by many microspheres, while the fine particles were well dispersed with 50-150 mm particle size. OCA dynamic images showed the enhanced hydrophilicity for the finer particles. The liquid absorption measurements demonstrated that water and physiological saline absorption velocity of KSAP increased for the finer particles, while their ultimate water holding capacity decreased accordingly. The liquid absorption capacity of the finest sample (75 mm) could reach its maximum value (332.5 6 5.6 g/g) in 0.5 min, while the coarsest sample (850 mm) reached the maximum value (532.5 6 1.2 g/g) in 16 min. The reason for this phenomenon was discussed, and a new model was proposed to explain it. We believe that the results of this article would be meaningful in application of KSAP as superabsorbent materials.