The JAK-STAT pathway plays a key role in mediating immune responses. The genetic effects of single nucleotide polymorphisms (SNPs) in JAK2 and STAT5B were investigated for serum cytokines, mastitis indicators and productions traits in a population of 468 Chinese Holstein cattle. Pooled DNA sequencing revealed one SNP (BTA8:g.39645396A>G) in JAK2 and two SNPs (BTA19:g.43673888A>G and BTA19:g.43660093T>C) in STAT5B. A fixed effect model considering the effects of SNPs, parity, herd, season and year of calving was used by way of the general linear model procedure of sas. Genotype frequencies of these SNPs in the population were in Hardy-Weinberg equilibrium (P > 0.05). A novel SNP (g.39645396A>G) in JAK2 was predicted to change the amino acid from lysine to asparagine and was significantly associated with the somatic cell count (SCC) and somatic cell score (SCS), whereas g.43673888A>G in STAT5B was significantly associated with SCC, SCS and interleukin-4 (IL-4) (P < 0.05). The dominant effect of g.39645396A>G in JAK2 was significant for SCS, and its additive effect was significant for SCC, whereas the dominant effect of g.43673888A>G in STAT5B was significant for SCS and IL-4 (P < 0.05). The combination of g.39645396A>G in JAK2 and g.43673888A>G in STAT5B showed a significant effect on SCC, SCS, IL-4 and TNF-α (P < 0.05). As for mRNA expression analysis, the AA genotype g.39645396A>G and GG genotype g.43673888A>G indicated higher mRNA expression level and were significantly different from other genotypes (P < 0.05). The results imply that JAK2 and STAT5B genes could be useful candidate genes, and the identified polymorphisms might potentially be strong genetic markers for selection of dairy cattle against mastitis development.