Chickens from two inbred lines selected for high (L10H) or low (L10L) mannose-binding lectin (MBL) serum concentrations were infected with infectious bronchitis virus (IBV), and innate as well as adaptive immunological parameters were measured throughout the experimental period. Chickens with high MBL serum concentrations were found to have less viral load in the trachea than chickens with low MBL serum concentrations indicating that these chickens were less severely affected by the infection. This study is the first to show that MBL expression is present in the lungs of healthy chickens and that the expression is upregulated at days 3 postinfection (p.i.) in L10H chickens. Furthermore, in the liver of infected chickens, the MBL expression was upregulated at day 7 p.i., despite the fact that the MBL serum concentrations were decreased below baseline at that time point. The number of TCRcd + CD8a + cells in the blood of noninfected chickens increased from week 0 to 3 p.i. However, the number of cells was higher in L10H chickens than in L10L chickens throughout the experiment. No increase was observed in the number of TCRcd + CD8a + cells in the blood of the infected L10H and L10L chickens. The numbers of B cells at week 3 p.i. were higher for noninfected L10L chickens than for the other chickens. No differences were observed between the infected and noninfected L10H chickens or between the infected L10H and L10L chickens. Furthermore, at week 3 p.i., the number of monocytes was higher in infected and noninfected L10H chickens than in the infected and noninfected L10L chickens. Thus, these results indicate that MBL is produced locally and may be involved in the regulation of the cellular immune response after an IBV infection. However, MBL did not appear to influence the humoral immune response after IBV infection in this study.
Mannose-binding lectin (MBL) is a collagenous lectin that kills a wide range of pathogenic microbes through complement activation. The MBL1 and MBL2 genes encode MBL-A and MBL-C, respectively. MBL deficiency in humans is associated with higher susceptibility to viral as well as bacterial infections. A number of single nucleotide polymorphisms (SNP) have been identified in the collagen-like domain of the human MBL gene, of which several are strongly associated with decreased concentrations of MBL in serum. In this study, we have identified a number of SNPs in the porcine MBL-A gene. Sequence comparisons identified a total of 14 SNPs, eight of which were found in exons and six in introns. Four of the eight exon-located SNPs were non-synonymous. Sequence data from several Duroc and Landrace pigs identified four different haplotypes. One haplotype was found in Duroc pigs only, and three haplotypes were found in the Landrace pigs. One of the identified haplotypes was associated with low concentration of MBL-A in serum. The concentration of MBL-A in serum was further assessed in a large number of Duroc and Landrace boars to address its correlation with disease frequency. The MBL-A concentration in Duroc boars showed one single population, whereas Landrace boars showed four distinct populations for MBL-A concentration. The Landrace boars were finally assessed for disease incidence, and the association with the concentration of MBL-A in serum was investigated. No association between MBL and disease incidence was found in this study.
Mannose-binding lectin (MBL) plays a major role in the immune response as a soluble pattern-recognition receptor. MBL deficiency and susceptibility to different types of infections have been subject to extensive studies over the last decades. In humans and chickens, several studies have shown that MBL participates in the protection of hosts against virus infections. Infectious bronchitis (IB) is a highly contagious disease of economic importance in the poultry industry caused by the coronavirus infectious bronchitis virus (IBV). MBL has earlier been described to play a potential role in the pathogenesis of IBV infection and the production of IBV-specific antibodies, which may be exploited in optimising IBV vaccine strategies. The present study shows that MBL has the capability to bind to IBV in vitro. Chickens from two inbred lines (L10H and L10L) selected for high or low MBL serum concentrations, respectively, were vaccinated against IBV with or without the addition of the MBL ligands mannan, chitosan and fructooligosaccharide (FOS). The addition of MBL ligands to the IBV vaccine, especially FOS, enhanced the production of IBV-specific IgG antibody production in L10H chickens, but not L10L chickens after the second vaccination. The addition of FOS to the vaccine also increased the number of circulating CD4+ cells in L10H chickens compared to L10L chickens. The L10H chickens as well as the L10L chickens also showed an increased number of CD4-CD8α-γδ T-cells when an MBL ligand was added to the vaccine, most pronouncedly after the first vaccination. As MBL ligands co-administered with IBV vaccine induced differences between the two chicken lines, these results indirectly suggest that MBL is involved in the immune response to IBV vaccination. Furthermore, the higher antibody response in L10H chickens receiving vaccine and FOS makes FOS a potential adjuvant candidate in an IBV vaccine.
Mannose-binding lectin (MBL) plays a major role in the innate immune defence by activating the lectin complement pathway or by acting as an opsonin. Two forms of MBL have been characterised from several species, but for humans and chickens, only one form of functional MBL has been described. The human MBL2 gene is highly polymorphic, and it causes varying MBL serum levels. Several of the single-nucleotide polymorphisms (SNPs) have been associated with the severity of diseases of bacterial, viral or parasitic origin. Association between various diseases and different MBL serum levels has also been identified in chickens. In this study, two inbred chicken lines (L10L and L10H) which have been selected for low and high MBL levels in serum and four other experimental chicken lines were analysed for polymorphism in the MBL gene. The presence of polymorphisms in the MBL gene was revealed by southern blot analyses, and the differences in the serum concentrations of MBL were found to be of transcriptional origin according to real-time quantitative reverse transcription PCR analysis. Several SNPs were discovered in the promoter and the 5' untranslated region of the chicken MBL gene which resulted in the identification of six different alleles. Mapping of regulatory elements in the promoter region was performed, and SNPs that could affect the MBL serum concentration were identified. One SNP that was found to be located in a TATA box was altered in one of the six alleles only. This allele was associated with low MBL serum concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.