The design and measured results of a single-substrate transceiver module suitable for 76-77-GHz pulsed-Doppler radar applications are presented. Emphasis on ease of manufacture and cost reduction of commercial millimeter-wave systems is employed throughout as a design parameter. The importance of using predictive modeling techniques in understanding the robustness of the circuit design is stressed. Manufacturing techniques that conform to standard high-volume assembly constraints have been used. The packaged transceiver module, including three waveguide ports and intermediate-frequency output, measures 20 mm 22 mm 8 mm. The circuit is implemented using discrete GaAs/AlGaAs pseudomorphic high electron mobility transistors (pHEMTs), GaAs Schottky diodes, and varactor diodes, as well as GaAs p-i-n and pHEMT monolithic microwave integrated circuits mounted on a low-cost 127-m-thick glass substrate. A novel microstrip-to-waveguide transition is described to transform the planar microstrip signal into the waveguide launch. The module is integrated with a quasi-optical antenna. The measured performance of both the component parts and the complete radar transceiver module is described.