“…A common challenge in applying natural language processing (NLP) techniques to low-resource languages is the lack of training data in the languages in question. It has been demonstrated that through cross-lingual transfer, it is possible to leverage one or more similar high-resource languages to improve the performance on the low-resource languages in several NLP tasks, including machine score(L tf,1 , L tk ) score (L tf,2 , L tk translation (Zoph et al, 2016;Johnson et al, 2017;Nguyen and Chiang, 2017;Neubig and Hu, 2018), parsing (Täckström et al, 2012;Ammar et al, 2016;Ahmad et al, 2019;, partof-speech or morphological tagging (Täckström et al, 2013;Cotterell and Heigold, 2017;Malaviya et al, 2018;Plank and Agić, 2018), named entity recognition (Zhang et al, 2016;Mayhew et al, 2017;Xie et al, 2018), and entity linking (Tsai and Roth, 2016;Rijhwani et al, 2019). There are many methods for performing this transfer, including joint training (Ammar et al, 2016;Tsai and Roth, 2016;Cotterell and Heigold, 2017;Johnson et al, 2017;Malaviya et al, 2018), annotation projection (Täckström et al, 2012;Täckström et al, 2013;Zhang et al, 2016;Plank and Agić, 2018), fine-tuning (Zoph et al, 2016;Neubig and Hu, 2018), data augmentation (Mayhew et al, 2017), or zero-shot transfer (Ahmad et al, 2019;Xie et al, 2018;Neubig and Hu, 2018;Rijhwani et al, 2019).…”