Map matching of trajectory data has wide applications in path planning, traffic flow analysis, and intelligent driving. The process of map matching involves matching GPS trajectory points to roads in a roadway network, thereby converting a trajectory sequence into a segment sequence. However, GPS trajectories are frequently incorrectly matched during the map-matching process, leading to matching errors. Considering that few studies have focused on the causes of map-matching errors, as well as the distribution of these errors, the study aims to investigate the spatiotemporal characteristics and the contributing factors that cause map-matching errors. The study employs the Hidden Markov Model (HMM) algorithm to match the trajectories and identifies the four types of map-matching errors by examining the relationship between the matched trajectories and the driving routes. The map-matching errors consist of Off-Road Error (ORE), Wrong-match on Road Error (WRE), Off-Junction Error (OJE), and Wrong-match in Junction Error (WJE). The kernel density method and multinomial logistic model are further exploited to analyze the spatiotemporal patterns of the map-matching errors. The results indicate that the occurrence of map-matching errors substantially varies in time and space, with variation significantly influenced by intersection features and road characteristics. The findings provide a better understanding of the contributing factors associated with map-matching errors and serve to improve the accuracy of map matching for commercial vehicles.