In response to the COVID-19 pandemic, many Governments are instituting mobile tracking technologies to perform rapid contact tracing. However, these technologies are only effective if the public is willing to use them, implying that their perceived public health benefits must outweigh personal concerns over privacy and security. The Australian federal government recently launched the ‘COVIDSafe’ app, designed to anonymously register nearby contacts. If a contact later identifies as infected with COVID-19, health department officials can rapidly followup with their registered contacts to stop the virus’ spread. The current study assessed attitudes towards three tracking technologies (telecommunication network tracking, a government app, and Apple and Google’s Bluetooth exposure notification system) in two representative samples of the Australian public prior to the launch of COVIDSafe. We compared these attitudes to usage of the COVIDSafe app after its launch in a further two representative samples of the Australian public. Using Bayesian methods, we find widespread acceptance for all tracking technologies, however, observe a large intention-behaviour gap between people’s stated attitudes and actual uptake of the COVIDSafe app. We consider the policy implications of these results for Australia and the world at large.
Over the last fifty years, research into street networks has gained prominence with a rapidly growing number of studies across disparate disciplines. These studies investigate a wide range of phenomena using a wealth of data and diverse analytical techniques. Starting within the fields of transport or infrastructure engineering, street networks have commonly been treated as sets of more or less homogeneous linear elements, connecting locations and intersecting at junctions. This view is commonly represented as a graph, which provides a common and rigorous formalisation accessible across disciplines and is particularly well-suited for problems such as flow optimisation and routing. Street networks are, however, complex objects of investigation and the way we model and then represent them as graphs has fundamental effects on the outcomes of a study. Many approaches to modelling street networks have been proposed, each lending itself to different analyses and supporting insights into diverse aspects of the urban system. Yet, this plurality and the relation between different models remains relatively obscure and unexplored. The motivations for adopting a given model of the network are also not always clear and often seem to follow disciplinary traditions. This paper provides an overview of key street network models and the prima facie merits of pertinent alternative approaches. It suggests greater attention to consistent use of terms and concepts, of graph representations and practical applications, and concludes with suggestions for possible ways forward.
Place is a central concept in geography and a topic of interest in the social sciences, urban planning, architecture, and most recently in information science. The notion of place has therefore been studied with different foci of interest. Consequently, heterogeneous terminologies, conceptualizations, models, and ontologies have been proposed to capture this elusive concept. Yet these studies complement each other. Utilizing the concept of place facet as a particular type of information about place, in this review paper we bridge these multidisciplinary studies about place. We collect the different facets of place introduced in the literature and synthesize place characteristics by categorizing the identified facets. Finally, we discuss future directions for place-related research.
Destination descriptions are route descriptions focusing on the "where" of the destination instead of the "how" to reach it. They provide first a coarse reference to the destination, and then increasingly more detailed ones as the description proceeds. We introduce a definition of destination descriptions, along with an analysis of the construction and interpretation of destination descriptions grounded in pragmatic communication theory.We present a formal model enabling the selection of references for destination descriptions from models of experiential hierarchies of urban environments. This model generates route directions for people with some knowledge of the environment. Destination descriptions are usually shorter and we conjecture that the cognitive workload required during their use is lower than for equivalent turn-based directions.
COVID-19 is highly transmissible and containing outbreaks requires a rapid and effective response. Because infection may be spread by people who are pre-symptomatic or asymptomatic, substantial undetected transmission is likely to occur before clinical cases are diagnosed. Thus, when outbreaks occur there is a need to anticipate which populations and locations are at heightened risk of exposure. In this work, we evaluate the utility of aggregate human mobility data for estimating the geographical distribution of transmission risk. We present a simple procedure for producing spatial transmission risk assessments from near-real-time population mobility data. We validate our estimates against three well-documented COVID-19 outbreaks in Australia. Two of these were well-defined transmission clusters and one was a community transmission scenario. Our results indicate that mobility data can be a good predictor of geographical patterns of exposure risk from transmission centres, particularly in outbreaks involving workplaces or other environments associated with habitual travel patterns. For community transmission scenarios, our results demonstrate that mobility data add the most value to risk predictions when case counts are low and spatially clustered. Our method could assist health systems in the allocation of testing resources, and potentially guide the implementation of geographically targeted restrictions on movement and social interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.