2017
DOI: 10.4995/raet.2017.7931
|View full text |Cite
|
Sign up to set email alerts
|

Mapeo de la recuperación de la vegetación quemada mediante la clasificación de índices espectrales pre- y post-incendio

Abstract: Resumen: Este trabajo analizó el estado de recuperación de la vegetación del Parque Nacional Torres del Paine, incendiada entre diciembre de 2011 y marzo de 2012. El cálculo y comparación del NDVI (Normalized Difference Vegetation Index) del área afectada a lo largo de una serie temporal de 24 imágenes Landsat adquiridas antes, durante y después del incendio (2009)(2010)(2011)(2012)(2013)(2014)(2015), permitió apreciar la variación temporal en los niveles de biomasa de la vegetación afectada. La posterior clas… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
4
0
4

Year Published

2019
2019
2024
2024

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 8 publications
(8 citation statements)
references
References 11 publications
0
4
0
4
Order By: Relevance
“…Spectral indices had a similar performance, indicating that even when they are sensitive to different physical-chemical vegetation parameters (i.e., vigor and turgor) a significant autocorrelation may arise between them, as previous studies have pointed out (Chen et al, 2011;Peña and Ulloa, 2017). NDWI-and NBR-based differences yielded the highest correlations and predictive power, especially using the second and third post-fire image dates.…”
Section: Discussionmentioning
confidence: 55%
See 1 more Smart Citation
“…Spectral indices had a similar performance, indicating that even when they are sensitive to different physical-chemical vegetation parameters (i.e., vigor and turgor) a significant autocorrelation may arise between them, as previous studies have pointed out (Chen et al, 2011;Peña and Ulloa, 2017). NDWI-and NBR-based differences yielded the highest correlations and predictive power, especially using the second and third post-fire image dates.…”
Section: Discussionmentioning
confidence: 55%
“…The ability of an ecosystem to regenerate and to achieve its primal condition, i.e., resilience capability, will depend on the calcination severity or intensity of its biomass, as well as its response to ecosystem variables like seedling recruitment, resprouting, alien and native species colonization, among others (Keeley, 2009;Chen et al, 2011). In this sense, it should be noted that values retrieved from index-derived differences are more closely sensitive to the bulk amount of calcined or recovered biomass, and not necessarily to the reestablishment of other ecological attributes of the burnt ecosystem, such as structure and composition (Bastos et al, 2011;Peña and Ulloa, 2017). In spite of this, to relate these values to quantitative or qualitative field data of biomass calcination or recovery contributes to understand the response of several of those variables to fire damage (Key and Benson, 2006;De Santis and Chuvieco, 2009).…”
Section: Introductionmentioning
confidence: 99%
“…El cálculo de índices espectrales permite conocer el estado de la cobertura vegetal, por ende, su aplicación en estudios para determinar las afectaciones producidas en la cobertura vegetal es pertinente [16]. Además, puede utilizarse para prever posibles incendios forestales [23].…”
Section: E íNdices Espectralesunclassified
“…Existen diversos índices espectrales que utilizan imágenes satelitales para el cálculo del área abrasada. Regularmente se utilizan las imágenes del satélite Sentinel 2, implementadas con índices espectrales que evalúa el estado de la vegetación [16], los que permiten el mapeo y clasificación de la cobertura vegetal por medio del uso de bandas espectrales [7]. Sin embargo, la mayoría de estos estudios se limitan al uso y análisis de un índice espectral.…”
unclassified
“…The detection of this invasive species through automated procedures and satellite image processing is a subject with a large presence in the literature, with a focus on public platforms such as Sentinel images (Martimort et al, 2012), ASTER or Landsat (Viana and Aranha, 2010). The possibilities of combining different bands of the electromagnetic spectrum to highlight those elements of the Earth's surface that we are interested in, is an advantage that has been used in innumerable projects (Peña and Ulloa, 2017). In addition, we can also find works where drones are used for pixel evaluation and image classification.…”
Section: Introductionmentioning
confidence: 99%