In this paper, we introduce a new image denoising model: the damped flow (DF), which is a second order nonlinear evolution equation associated with a class of energy functionals of an image. The existence, uniqueness and regularization property of DF are proven. For the numerical implementation, based on the Störmer–Verlet method, a discrete DF, SV-DDF, is developed. The convergence of SV-DDF is studied as well. Several numerical experiments, as well as a comparison with other methods, are provided to demonstrate the efficiency of SV-DDF.